Affine cartesian codes

نویسندگان

  • Hiram H. López
  • Carlos Rentería-Márquez
  • Rafael H. Villarreal
چکیده

We compute the basic parameters (dimension, length, minimum distance) of affine evaluation codes defined on a cartesian product of finite sets. Given a sequence of positive integers, we construct an evaluation code, over a degenerate torus, with prescribed parameters. As an application of our results, we recover the formulas for the minimum distance of various families of evaluation codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the second Hamming weight of some Reed-Muller type codes

Abstract. We study affine cartesian codes, which are a Reed-Muller type of evaluation codes, where polynomials are evaluated at the cartesian product of n subsets of a finite field Fq. These codes appeared recently in a work by H. López, C. Renteŕıa-Marquez and R. Villareal (see [11]) and, independently, in a generalized form, in a work by O. Geil and C. Thomsen (see [9]). Using a proof techniq...

متن کامل

Application of Affine Transformations in a Mathematical Cartesian Coordinates for Java Students

Affine transformation preserves the original shapeof an object, therefore it is a very important aspect in computer graphics. This paper presents a technique, how to apply reflections transformation in a mathematical Cartesian coordinates for Java students.

متن کامل

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

Logarithm cartesian authentication codes

Chanson, Ding and Salomaa have recently constructed several classes of authentication codes using certain classes of functions. In this paper, we further extend that work by constructing two classes of Cartesian authentication codes using the logarithm functions. The codes constructed here involve the theory of cyclotomy and are better than a subclass of Helleseth–Johansson’s codes and Bierbrau...

متن کامل

The Automorphism Groups of BCH Codes and of Some Affine-Invariant Codes Over Extension Fields

Affine-invariant codes are extended cyclic codes of length pm invariant under the affine-group acting on Fpm . This class of codes includes codes of great interest such as extended narrow-sense BCH codes. In recent papers, we classified the automorphism groups of affine-invariant codes [2], [5]. We derive here new results, especially when the alphabet field is an extension field, by expanding o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2014